Data from: Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird

When using this dataset, please cite the original article.

Lamb JS, Satgé YG, Jodice PGR (2017) Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird. Ecology and Evolution 7(13). doi:10.1002/ece3.3216

Additionally, please cite the Movebank data package:

Lamb JS, Satgé YG, Jodice PGR (2017) Data from: Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird. Movebank Data Repository. doi:10.5441/001/1.7856r086
Cite | Share
Download the data package citation in the following formats:
   RIS (compatible with EndNote, Reference Manager, ProCite, RefWorks)
   BibTex (compatible with BibDesk, LaTeX)

Package Identifier doi:10.5441/001/1.7856r086  
 
Abstract Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of in- traspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior out- side the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown peli- can (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our pre- dictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreed- ing, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density- dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding success and population regulation remain uncertain in this system.
Keywords animal foraging, animal movement, animal tracking, Argos, avian migration, brown pelican, movement ecology, Pelecanus occidentalis, satellite telemetry,

Brown pelican data from Lamb et al. (2017) View File Details
Download: README.txt ( 12.90Kb )
Download: Brown pelican data from Lamb et al. (2017).csv ( 31.53Mb )
To the extent possible under law, the authors have waived all copyright and related or neighboring rights to this data.  



Brown pelican data from Lamb et al. (2017)-reference-data View File Details
Download: README.txt ( 12.90Kb )
Download: Brown pelican data from Lamb et al. (2017)-reference-data.csv ( 20.67Kb )
To the extent possible under law, the authors have waived all copyright and related or neighboring rights to this data.  


Submission