Person:
Laaksonen, Toni

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Laaksonen
First Name
Toni
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Birds of three worlds: moult migration to high Arctic expands a boreal‑temperate flyway to a third biome
    (2021-11-15) Piironen, Antti; Paasivaara, Antti; Laaksonen, Toni
    Background: Knowledge on migration patterns and flyways is a key for understanding the dynamics of migratory populations and evolution of migratory behaviour. Bird migration is usually considered to be movements between breeding and wintering areas, while less attention has been paid to other long-distance movements such as moult migration. Methods: We use high-resolution satellite-tracking data from 58 taiga bean geese Anser fabalis fabalis from the years 2019–2020, to study their moult migration during breeding season. We show the moulting sites, estimate the migratory connectivity between the breeding and the moulting sites, and estimate the utilization distributions during moult. We reveal migration routes and compare the length and timing of migration between moult migrants and successful breeders. Results: All satellite-tracked non-breeding and unsuccessfully breeding taiga bean geese migrated annually to the island of Novaya Zemlya in the high Arctic for wing moult, meaning that a large part of the population gathers at the moulting sites outside the breeding range annually for approximately three months. Migratory connectivity between breeding and moulting sites was very low (rm =  − 0.001, 95% CI − 0.1562–0.2897), indicating that individuals from different breeding grounds mix with each other on the moulting sites. Moult migrants began fall migration later in autumn than successful breeders, and their overall annual migration distance was over twofold compared to the successful breeders. Conclusions: Regular moult migration makes the Arctic an equally relevant habitat for the taiga bean goose population as their boreal breeding and temperate wintering grounds, and links ecological communities in these biomes. Moult migration plays an important role in the movement patterns and spatio-temporal distribution of the population. Low migratory connectivity between breeding and moulting sites can potentially contribute to the gene flow within the population. Moult migration to the high Arctic exposes the population to the rapid impacts of global warming to Arctic ecosystems. Additionally, Novaya Zemlya holds radioactive contaminants from various sources, which might still pose a threat to moult migrants. Generally, these results show that moult migration may essentially contribute to the way we should consider bird migration and migratory flyways.
  • Data package
    Data from: The Indo-European Flyway: opportunities and constraints reflected by common rosefinches breeding across Europe
    (2021-03-11) Lisovski, Simeon; Neumann, Roland; Albrecht, Tomas; Munclinger, Pavel; Ahola, Markus P.; Bauer, Silke; Cepak, Jaroslav; Fransson, Thord; Jakobsson, Sven; Jaakkonen, Tuomo; Klvana, Petr; Kullberg, Cecilia; Laaksonen, Toni; Metzger, Benjamin; Piha, Markus; Shurulinkov, Peter; Stach, Robert; Ström, Kåre; Velmala, William; Briedis, Martins
    Aim: The configuration of the earth's landmasses influences global weather systems and spatiotemporal resource availability, thereby shaping biogeographical patterns and migratory routes of animals. Here, we aim to identify potential migratory barriers and corridors, as well as general migration strategies within the understudied Indo‐European flyway. Methods: We used a combination of theoretical optimization modelling and empirical tracking of Common Rosefinches (Carpodacus erythrinus) breeding across a large latitudinal gradient in Europe. First, we identified optimal migration routes driven by wind and resource availability along the Indo‐European flyway. Second, we tracked rosefinches from five breeding populations using light‐level geolocators. Finally, we compared to what extent empirical tracks overlapped with the modelled optimal routes. Results: In autumn, theoretical wind driven migration routes formed a broad‐front corridor connecting Europe and the Indian Subcontinent while the theoretical resource driven routes formed a distinct north‐south divide. The latter pattern also reflected the rosefinch tracks with all but the most southerly breeding birds making a northern detour towards non‐breeding sites in Pakistan and India. In spring, the resource availability model predicted a similar migratory divide, however, the southern route seemed relatively more favourable and closely matched with the optimal wind driven migration routes. Spring tracking data showed larger overlap with the modelled wind driven migration routes compared to the resource driven routes. Main conclusions: Optimal wind and resource driven migration routes along the Indo‐European flyway are seasonally specific and to a large extend do not overlap with one another. Under these conditions, migratory birds adopt seasonally distinct migration strategies following energy minimization strategy in autumn, driven by resource availability, and time minimizing strategy in spring, driven by wind conditions. Our optimal migration models can be applied worldwide and used to validate against empirical data to explain large‐scale biogeographic pattern of migratory animals.