Person:
Briedis, Martins

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Briedis
First Name
Martins
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Geolocators reveal variation and sex-specific differences in the migratory strategies of a long-distance migrant
    (2021-12-29) Bell, Fraser; Bearhop, Stuart; Briedis, Martins; El Harouchi, Myriam; Bell, Sophie C.; Castello, Joan; Burgess, Malcolm D.
    Songbird populations are in decline all over the world, and our understanding of the causal mechanisms remains surprisingly limited. It is important to identify the extent of individual variations in migratory behaviour to better understand species' ability to respond to environmental change. We describe the annual migratory behaviour of British breeding European Pied Flycatchers Ficedula hypoleuca by using light-recording geolocators. During both autumn and spring migrations, individuals used previously unknown staging areas on the Iberian Peninsula and northern West Africa. Furthermore, partial sex-specific segregation in the location of non-breeding areas was observed within West Africa, with females located west of males. We also found sex-based phenological differences, with females staying longer in non-breeding areas and undertaking the spring Sahara Desert crossing later than males. Irrespective of sex, multiple use of the two predominant staging regions was identified during both migrations, with 63% of individuals stopping more than once in these regions. We also identified instances of migratory behaviours rarely documented in individually tracked songbirds. These include making daytime landfall during the Sahara crossing, and a case of a temporary retreat migration, with an individual aborting a spring Sahara crossing before making a second successful crossing 14 days later. Together, our results show variability in migratory behaviour both between sexes and between individuals. For Pied Flycatchers, such flexible migratory behaviour may increase their resilience to environmental change.
  • Data package
    Data from: First records of complete annual cycles in water rails Rallus aquaticus show evidence of itinerant breeding and a complex migration system
    (2020-11-30) Lislevand, Terje; Hahn, Steffen; Rislaa, Sven; Briedis, Martins
    In water rails Rallus aquaticus, northern and eastern populations are migratory while southern and western populations are sedentary. Few details are known about the annual cycle of this elusive species. We studied movements and breeding in water rails from southernmost Norway where the species occurs year‐round. Colour‐ringed wintering birds occurred only occasionally at the study site in summer, and vice versa. Geolocator tracks revealed that wintering birds (n = 10) migrated eastwards in spring to breed on both sides of the Baltic Sea, whereas a single breeding bird from the study site wintered in N Italy. Ambient light records of geolocator birds further indicated that all but one incubated 2–4 clutches per season. By combining information on incubation and movement, we found evidence for itinerant breeding in three individual birds: After a first breeding attempt (one did not incubate), all moved 129–721 km to breed again. This behaviour is rarely recorded in birds and was unexpected because the water rail is described as monogamous with both parents caring for eggs and chicks. The study greatly improves our knowledge about the annual cycle and reproduction in water rails. However, more studies are warranted to evaluate the generality of our findings and causes of breeding itinerancy.
  • Data package
    Data from: The Indo-European Flyway: opportunities and constraints reflected by common rosefinches breeding across Europe
    (2021-03-11) Lisovski, Simeon; Neumann, Roland; Albrecht, Tomas; Munclinger, Pavel; Ahola, Markus P.; Bauer, Silke; Cepak, Jaroslav; Fransson, Thord; Jakobsson, Sven; Jaakkonen, Tuomo; Klvana, Petr; Kullberg, Cecilia; Laaksonen, Toni; Metzger, Benjamin; Piha, Markus; Shurulinkov, Peter; Stach, Robert; Ström, Kåre; Velmala, William; Briedis, Martins
    Aim: The configuration of the earth's landmasses influences global weather systems and spatiotemporal resource availability, thereby shaping biogeographical patterns and migratory routes of animals. Here, we aim to identify potential migratory barriers and corridors, as well as general migration strategies within the understudied Indo‐European flyway. Methods: We used a combination of theoretical optimization modelling and empirical tracking of Common Rosefinches (Carpodacus erythrinus) breeding across a large latitudinal gradient in Europe. First, we identified optimal migration routes driven by wind and resource availability along the Indo‐European flyway. Second, we tracked rosefinches from five breeding populations using light‐level geolocators. Finally, we compared to what extent empirical tracks overlapped with the modelled optimal routes. Results: In autumn, theoretical wind driven migration routes formed a broad‐front corridor connecting Europe and the Indian Subcontinent while the theoretical resource driven routes formed a distinct north‐south divide. The latter pattern also reflected the rosefinch tracks with all but the most southerly breeding birds making a northern detour towards non‐breeding sites in Pakistan and India. In spring, the resource availability model predicted a similar migratory divide, however, the southern route seemed relatively more favourable and closely matched with the optimal wind driven migration routes. Spring tracking data showed larger overlap with the modelled wind driven migration routes compared to the resource driven routes. Main conclusions: Optimal wind and resource driven migration routes along the Indo‐European flyway are seasonally specific and to a large extend do not overlap with one another. Under these conditions, migratory birds adopt seasonally distinct migration strategies following energy minimization strategy in autumn, driven by resource availability, and time minimizing strategy in spring, driven by wind conditions. Our optimal migration models can be applied worldwide and used to validate against empirical data to explain large‐scale biogeographic pattern of migratory animals.